The Friar-Preachers, or Black Friars, of King’s Lynn

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Kings

A king in a directed graph is a node from which each node in the graph can be reached via paths of length at most two. There is a broad literature on tournaments (completely oriented digraphs), and it has been known for more than half a century that all tournaments have at least one king [Lan53]. Recently, kings have proven useful in theoretical computer science, in particular in the study of t...

متن کامل

Preachers who are not believers.

There are systemic features of contemporary Christianity that create an almost invisible class of non-believing clergy, ensnared in their ministries by a web of obligations, constraints, comforts, and community. Exemplars from five Protestant denominations, Southern Baptist, United Church of Christ, Presbyterian, Methodist and Church of Christ, were found and confidentially interviewed at lengt...

متن کامل

On the 3-kings and 4-kings in multipartite tournaments

Koh and Tan gave a sufficient condition for a 3-partite tournament to have at least one 3-king in [K.M. Koh, B.P. Tan, Kings in multipartite tournaments, Discrete Math. 147 (1995) 171–183, Theorem 2]. In Theorem 1 of this paper, we extend this result to n-partite tournaments, where n 3. In [K.M. Koh, B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math. 154 (1996)...

متن کامل

The Problem of the Kings

On a 2m 2n chessboard, the maximum number of nonattacking kings that can be placed is mn, since each 22 cell can have at most one king. Let f m (n) denote the number of ways that mn nonattacking kings can be placed on a 2m 2n chessboard. The purpose of this paper is to prove the following result. such that f m (n) = (c m n + d m)(m + 1) n + O(n m) (n ! 1): For every such placement of kings, the...

متن کامل

On the Domination of Kings

In this paper, we consider counting the number of ways to place kings on an k × n chessboard, such that every square is dominated by a king. Let f(k, n) be the number of dominating configurations. We consider the asymptotic behavior of the function f(k, n).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archaeological Journal

سال: 1884

ISSN: 0066-5983,2373-2288

DOI: 10.1080/00665983.1884.10852124